SWCWARMs 模式不同起报时次
对“18·05·21”强降水过程的预报能力评估

陈朝平1,3, 卢 萍2,3

（1. 四川省气象台, 成都 610072; 2. 中国气象局成都高原气象研究所, 成都 610072;
3. 高原与盆地暴雨早涝灾害四川省重点实验室, 成都 610072）

摘要: 针对 2018 年入汛以来四川地区首场区域性暴雨天气过程（“18·05·21”过程）, 利用西南区域中尺度业务模式（SWCWARMs）的预报结果, 通过对比分析两个不同起报时次对此次强降水天气过程的预报结果, 发现: 随着预报时次的临近, 其降水的预报效果越好; 在临近降水发生过程前以观测资料和再分析资料启动模式, 对大气状态的刻画比用模式运行结果更为真实, 一方面可以改善大气的湿相结构来改善层结状态, 影响其稳定度, 另一方面通过改善其环流场, 增强低层的气旋性辐合和水汽的输送, 从而影响降水过程的预测。采样更为真实的初始场启动模式以后, 能更加准确地模拟出降水过程前后的水汽的积累和释放的热力过程, 以及湍流、扩散和垂直上升运动对降水因子共同协调发展过程, 因此对预报效果有正反馈。

关键词: 不同起报时次; 大气层结; 热力过程; 动力过程

中图分类号: P435 文献标识码: A doi:10.3969/j.issn.1674－2184.2020.03.001

引言

暴雨是我国主要灾害性天气之一, 一直受到气象学者的高度重视[1]。暴雨是有利于的大尺度环境下, 由各种天气尺度系统相互作用而形成的, 研究中尺度系统对暴雨的作用十分重要[2-5]。由于常规观测站的分布受许多条件制约, 导致常规观测无法得到高分辨率的连续气象场, 只有数值模式才能较全面把握大气演变过程, 因此数值模式成为研究中尺度暴雨系统的有效工具, 而高时空分辨率的模式结果为分析中尺度系统的发展过程提供了有力的支持。近年来, 虽然数值模式分辨率和准确率的提高, 各种数值模式被用于暴雨过程的中小尺度特征的模拟研究, 并揭示出暴雨过程的中小尺度演变特征[6-9]。藏青高原东侧的四川盆地, 地形复杂, 气候独特, 暴雨往往在汛期的 7 月和 8 月, 与高原上的低温系统东移、高空短波槽变有密切关系[10-14]。

本文利用西南区中尺度预报业务模式（简称 SWCWARMS 模式）的预报结果[20], 比较不同的起报时次对...
“18.05.21”过程的预报差异，由大尺度环流特征、环境条件、中尺度系统发展演变、配合复杂地形的作用等角度综合探讨不同预报时效对此次暴雨过程产生预报差异的原因，以增进预报员对模式性能的理解，为模式产品的修订提供参考依据。

1 实况

1.1 降水实况

2018年5月21～22日，受北方冷空气和西南低涡的

共同影响，四川多地出现大暴雨，局部特大暴雨。雷雨时普遍出现6～7级偏北大风，为2018年四川省入汛以来首场区域性暴雨天气过程，也是近20年来四川盆地出现最早的区域性暴雨过程。此次过程，具有移动时间快，影响范围广，局地雨量大的特点。降雨主要时段在21日晚上和22日凌晨，根据5月21日00时至22日00时（文中所有时间皆采用世界时），全省雨量统计，降雨量50～100mm842站，100mm301站，特大暴雨（≥250mm）6站，最大降雨出现在沐川县芹菜坪镇为360.2mm（图1a）。

![图1 实况和模拟的“5.21”过程24h降水分布(单位:mm)(a)实况；(b)试验1；(c)试验2和(d)降水中心的逆时降水(单位:mm/h)](https://via.placeholder.com/150)

1.2 环流背景形势

500hPa 欧亚洲中高纬地区为两槽两脊，东移南下的低涡携带冷空气于19日20时开始影响我国新疆地区，中心强度达到了524gpm，随后此低涡逐步旋转东移（图略）。21日00～12时，低涡位于贝加尔湖附近，南北轴明显大于东西轴，涡底的高空槽经向度大，举而深，槽底携带较强的冷空气影响至四川盆地；高压脊位于我国东北部130°E附近，副热带高压588线在华南一带。21日20时，副高北界明显北抬，脊线为西北东南向，副高脊线西北侧为西南气流。四川盆地正是处于中高纬低涡底部槽后西南气流和副高北侧输送的西南暖湿气流的冷暖交汇处。

1.3 中尺度对流系统特征

从21日12:30时多普勒雷达联网拼图反射率来看，在盆地西南已经有＞45dBZ的回波点，对应回波顶高大于15km，发展旺盛的强对流回波（图略）。此后，回波北移发展，强度大于50dBZ的回波面积迅速加大，短时强降雨特征明显。13:30时，盆地南部乐山地区的回波发
展起来，强度达50dbz以上，对回波顶高>15km，为发展旺盛的强降水回波，都是由对流单体群组成（图3a）。从雷达回波整体看，到18:00时中等强度回波区域最大（图3b），随后盆地南部乐山一带回波逐渐减弱，盆地东部北部广安、达州一带回波加强发展起来。

总体来看，本次过程强度大于50dbz的回波面积很小，零星的夹杂在中等强度回波中，加上山区地形抬升，产生连续几小时强降水，是造成局部地方雨量过大的原因。

2 模式结果对比分析

2.1 预报降水分布

本文采用SWCWARM的模式的预报结果进行分析研究，该模式的介绍和参数配置详见参考文献[20]。大气状态描述的准确性是决定数值模式降水预报结果好坏的关键因子之一，不同起报时间造成的结果降水预报结果差异，正是源于对低层流场的刻画不同。此次降水过程主要发生在21日00时~22日00时，故而本文分别选取了20日00时起报的预报结果（文中简称试验1）和21日00时起报的预报结果（文中简称试验2）进行对比分析。

实际降水区域主要分布在四川盆地的南部地区，2个最强降水中心分别位于103.9°E，28.9°N和104.9°E，28.6°N（图1a）。20日00时起报的中雨及以上量级预报与实况较接近（图1b），但预报降水中心分散且偏东，三个降水中心分别位于105.6°E，28.3°N，105.8°E，29°N和106.3°E，29.05°N（图1b）。21日00时起报的降水中心对实况有较好的参考价值，预报出了盆地西南部，南部和东北部的降水，对盆地南部>50mm的强降水区把握得比较好，最大降水中心位于104.7°E，28.85°N，但同时东北部降水空报也较多。21日00时起报的预报结果对盆地南部实际降水的发生时间和落区预报都更接近实况（图1c）。再对比强降水的发生时段（图1d），逐时雨量图显示实际降水主要发生在2个时段：一个是21日11~15时，另外一个是21日17~19时，两个最大降水峰值出现在13时和18时。20日00时起报的降水比实况滞后，降水主要发生在21日17时~22日00时，两个峰值分别出现在21日19时和21日00时起报的降水也发生在2个阶段，分别是21日12~16时和21日19~22时，峰值分别出现在21日14时和20时，且前一阶段的降水强度比后一阶段大很多。综合比较该模式不同起报时间对这次过程的预报结果，该业务模式随预报时效的增长，对降水落区和发生时段的预报效果都变差。

2.2 基本物理场的差异

两个不同起报时间的预报物理量的差异的根本原因就在于试验1在21日00时刻的模式场来自模式运行24小时的结果，而试验2是来自观测资料和再分析资料的同化结果（通常被当作真实的大气状态），因此该时刻模式大气物理状态的刻画即存在一定的差异。下面就对该时刻各基本物理量场进行具体分析。

21日00时，从低层（850hPa）到中层（500hPa）的天气形势，位势高度呈现东高西低的分布特征。四川盆地内也是东高西低，整个四川盆地内位势高度的差异都表观为负偏差，即模式的初始位势高度低于模式运行后得到的结果，且越靠近低层偏差越显著（图4）。850hPa,21日00时起报的位势高度显著低于20日00时起报的结果，最大偏差出现在盆地和高原/山脉接壤的边缘地带，偏差值在-20~30gpm（图4a）; 700hPa 次之，主要偏差范围在-10~20gpm（图4b）; 500hPa 高度上差值不明显（图4c）。此外，盆地周边高地形处的位势高度也是显著偏低，尤其是高原上积高海拔地带，最大偏差超过-40gpm。

21日00时，从低层到中层的温度等值线都显示四川盆地是个高温区，高温中心位于盆地东南部，试验2的温度在盆地内部高于试验1的结果（图5），最大偏差出现在盆地的西部和南部，低层温度偏差略高于高层，最大偏差值在2~3K。四川盆地的东南部，随着高度的增加，温度的增量明显降低。850hPa,试验2比试验1高出（图5a）2K; 700hPa,仅高出1K（图5b）; 500hPa,温度差值在1K 以内，差别不明显（图5c）。
21日00时，从低层到中层的湿度等值线都显示四川盆地是个高湿区。在盆地内部，两个试验的比湿增量在不同高度层表现出较大的差异（图6）。850hPa两个试验的比湿差异在盆地大范围内都在-1~+1g/kg（图6a），最大正偏差出现在700hPa层，偏差值达到4g/kg（图6b），500hPa 比湿差值反转，偏差值在-2~+1g/kg（图6c），这种下湿上干的大气层结更容易产生不稳定的垂直结构，从而触发降水。

21日00时，从低层到中层四川盆地中空主要为西南气流所控制（图7）。850hPa，受四川盆地地形影响，气流进入四川盆地后呈现气旋性弯曲。试验2与试验1相比，在川东部出现风矢量增量的大值区，西部靠近地形边坡区，风速增量为负，在盆地内部增强了气旋环流的强度，有利于低层大气产生辐合（图7a）。700hPa 流场上没
有出现明显的气旋性环流，整个盆地为西南气流所控制，
盆地上空以正的风速偏差为主，最大风速增量出现在盆地
东部，偏差值超过 6m/s（图 7b），500hPa 流场以西南气
流和西风气流为主，且西风气流上存在小波动，两股气流
之间有在盆地上空交汇，存在弱切变，试验 2 中盆地东部
的西南气流依然强于试验 1，出现 >4m/s 的正风速增量
（图 7c），试验 2 中进入四川盆地的西南气流有显著的增
强，增加了对盆地内部的水汽供应。

图 6 同图 4,但为降水（单位：µm/kg）

图 7 同图 4,但为风场（单位：m/s),红色等值线为试验 2 流场

对比两个试验结果，试验 2 的改善作用一方面体现
在改变大气的湿湿结构，通过改变大气的层结状态，影响
其稳定度，另一方面通过改善其环流场，增强低层的气旋
性辐合和水汽的输送，从动力角度影响整个降水过程。

2.3 降水中心上空物理量场的演变差异

在对比不同起报时间的预报结果不同是由模式初
值造成的差异，那么降水发生发展过程中，降水中心上空
关键大气物理量场是如何演变且其特征如何？需要进行
详细的分析。

2个试验的位温都表现为白天边界层大气受陆面加热的影响，低层大气的位温逐渐增大；午后，整个低层大气在垂直方向上呈现等位温现象，层结结构变为稳定（图8）。试验1的层结稳定时段从03时持续到15时，较强的上升运动出现在13～23时，持续时段较长，最大上升运动出现在19时，中心高度600hPa附近，速度为−15～20Pa/s（图8a）。试验2中强上升运动主要集中在12～14时，最强上升运动出现在13时，最大速度出现在450hPa高度附近，速度超过−25Pa/s（图8b）。对强降水中心上升运动的速度和发展度的模拟偏差是造成2个试验对“5.21”过程程度和发生时段预报差异的主要原因（用其解释为系统动力条件的不同）。

图8 “5.21”过程中，降水中心的垂直速度（阴影，单位：Pa/s）和位温（等值线，单位：K）随时间的演变

试验1和试验2中，在降水中心所在的盆地南部呈现一个能量不断增加的高能中心，为该区域发展强对流天气储备了较好的能量条件，过程结束后能量释放迅速，对流有效位能值从过程临近前的3000J/kg骤降到0J/kg。对比试验2比试验1中对流有效位能的增长速度和释放速度都显著偏慢，能量释放最快的时间段为21日12～14时，与其最强降水的时段相一致。试验1中对流有效位能释放时段集中在21日13～18时，效率明显低于试验2（图9a）。整层水气的增长也是与降水辐合密不可分，2个试验结果都表明在降水发展阶段，降水中心上空有大量水蒸气汇集增长，水汽含量随着降水的结束而减少。试验1中，水汽从21日12时开始聚集，15～16时有一个弱的减少，然后再次增长，直到18时，最大降水含量66kg/m²，此后水汽含量一直降低。试验2在21日12～14时水气量急剧增加，从60kg/m²增加到了74kg/m²，14～15时，大气中的水汽含量随着降水快速从74kg/m²减少到56kg/m²（图9b）。对照他们各自的降水过程发现，试验2过程中降水与能量和水汽的累积释放都非常一致，这种能量和水汽的良好匹配的关系是其降水强度远远大于试验1的原因之一。

图9 “5.21”过程中，降水中心(a)对流有效位能(单位：J/kg)和(b)整层水汽含量(单位：kg/m²)随时间的演变，黑线是试验1的结果，红线是试验2的结果
图 10 “5·21”过程中，降水中心对应的温度（单位: 10^{-3}°C）随时间的演变。其中，黑线表示试验 1，红线为试验 2；实线是 850hPa，虚线表示 700hPa。

“5·21”过程中，降水中心低层随时间的演变情况（图 10）。试验 1 中，850hPa 高度层上，正涡度分别出现在 21 日 15 时和 21 日 19 时～22 日 00 时，最大正涡度出现在 21 日 22 时，值为 6 × 10^{-3}°C，700hPa 高度层上，正涡度出现在 21 日 07 时、08 时、15 时和 22 时，最大正涡度也是出现在 22 时，其值接近 8 × 10^{-3}°C，两个层次上正涡度的时次为 15 时和 22 时。试验 2 中，800hPa 层上正涡度出现在 21 日 13 时～22 日 00 时，最大正涡度出现在 14 时，最大值超过 11 × 10^{-3}°C，700hPa 高度层上最大正涡度出现在 21 日 13 和 14 时，最大值超过 12 × 10^{-3}°C，较小的正涡度出现在 18 时～22 日 00 时，两个层次上都出现正涡度的时次是 13～14 时，其中 14 时的涡度值最大。可见，试验 2 中的正涡度发展明显强于试验 1，两个试验结果都表明上下层的正涡度都一致强烈发展的时次对应降水强度最大。

此次暴雨过程是在高纬低涡携带冷空气东移，与西伸北抬的副高西侧的西南气流形成冷暖交汇，盆地南部产生的以强对流性降水为主的天气过程。降水发展期的纬向和经向剖面显示，试验 1 中，从北面入侵的冷空气，21 日 15 时方到达盆地南部，遇地形阻挡，同时有暖湿气流与之交汇，触发上升运动。与该地区大气有利的能量条件和动力条件相结合，形成了这次强降水过程（图 11）。试验 2 中，21 日 10 时，低层暖湿气流进入盆地后形成气旋性弯曲使得它在盆地东南部遇西侧的山脉后产生爬坡，由此触发弱的上升运动，并随着中层的偏西气流逐渐东移加强。与此同时，从北面入侵的强冷空气与盆地内的暖湿气流形成冷暖交汇后辐合上升，有利的热力和动力因素同时配合在一起，产生了非常强的对流上升运动，最终形成这次强降水过程（图 12）。

图 11 试验 1 中，降水发展期的水平风场（阴影，单位：m/s）和垂直风场（白色等值线，单位：Pa/s），流线为水平和垂直风场的合成风，红色虚线表示地形高度（单位：m）。(a) 21 日 15 时的纬向剖面；(b) 21 日 18 时纬向剖面；(c) 21 日 21 时纬向剖面；(d) 21 日 15 时经向剖面；(e) 21 日 18 时经向剖面；(f) 21 日 21 时经向剖面。
3 结论与讨论

通过对比两个不同起报时间对短降水天气过程的预报结果，发现短期预报过程的时间起报得到的预报效果更好。整体来说，短期预报对降水量级、落区预报以及主要降水发生时段的模拟结果和实况较为接近，究其原因，有以下几个方面。

（1）在短期降水发生过程前以观测资料和再分析资料启动模式，对大气状态的刻画比用模式自行运行结果更为真实。既能改善大气的湿适结构，影响其稳定度；又能改善其环流场，增强低层的气旋性辐合和水汽的输送，从动力角度影响整个降水过程。

（2）采用更为真实的初始场启动模式以后，能更加准确地模拟出降水前后的时段能量/水汽的积累和释放，湿度、温度和垂直上升运动等动力因子共同协调发展，无论热力还是动力方面都对预报效果有正的影响。

参考文献

Prediction Ability Assessment on SWCWARMS Model Using Different Starting Times during Case “18・05・21”

CHEN Zhaoping\(^1,2\), LU Ping\(^2,3\)

(1. Sichuan Meteorological Observatory, Chengdu 610072, China; 2. Institute of Plateau Meteorology, CMA, Chengdu 610072, China; 3. Heavy Rain and Drought – Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China)

Abstract: Based on the prediction results of southwest regional meso-scale business model for the first regional heavy rain weather process in Sichuan on 21 May 2018, a comparative analysis of forecast results by different starting times found that the more near to the forecast effect is better. The results show that the description of the atmospheric state is more realistic when the observed data and reanalysis data are used before the occurrence of precipitation. On the one hand, the stratification state can be changed by improving the temperature and humidity structure of the atmosphere to affect its stability; on the other hand, the cyclonic convergence and moisture transport in the lower layer can be enhanced by improving its circulation field, thus affecting the whole precipitation process from a dynamic perspective. The more realistic initial field starting model can more accurately simulate the thermodynamic process of energy/water vapor accumulation and release before and after precipitation, as well as the coordinated development process of dynamic factors such as vorticity, divergence and vertical rising motion, so it has a positive impact on the prediction effect.

Key words: forecast results, starting time, atmospheric stratification, thermal process, dynamic process